Histone demethylase PHF8 promotes epithelial to mesenchymal transition and breast tumorigenesis

نویسندگان

  • Peng Shao
  • Qi Liu
  • Peterson Kariuki Maina
  • Jiayue Cui
  • Thomas B. Bair
  • Tiandao Li
  • Shaikamjad Umesalma
  • Weizhou Zhang
  • Hank Heng Qi
چکیده

Histone demethylase PHF8 is upregulated and plays oncogenic roles in various cancers; however, the mechanisms underlying its dysregulation and functions in carcinogenesis remain obscure. Here, we report the novel functions of PHF8 in EMT (epithelial to mesenchymal transition) and breast cancer development. Genome-wide gene expression analysis revealed that PHF8 overexpression induces an EMT-like process, including the upregulation of SNAI1 and ZEB1. PHF8 demethylates H3K9me1, H3K9me2 and sustains H3K4me3 to prime the transcriptional activation of SNAI1 by TGF-β signaling. We show that PHF8 is upregulated and positively correlated with MYC at protein levels in breast cancer. MYC post-transcriptionally regulates the expression of PHF8 via the repression of microRNAs. Specifically, miR-22 directly targets and inhibits PHF8 expression, and mediates the regulation of PHF8 by MYC and TGF-β signaling. This novel MYC/microRNAs/PHF8 regulatory axis thus places PHF8 as an important downstream effector of MYC. Indeed, PHF8 contributes to MYC-induced cell proliferation and the expression of EMT-related genes. We also report that PHF8 plays important roles in breast cancer cell migration and tumor growth. These oncogenic functions of PHF8 in breast cancer confer its candidacy as a promising therapeutic target for this disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crosstalk between Tumor Cells and Immune System Leads to Epithelial-Mesenchymal Transition Induction and Breast Cancer Progression

Herein, we review the current findings of how a variety of accessory cells could participate in shaping the tumor microenvironment and supporting the mechanisms by which cancer cells undertake the epithelial-mesenchymal transition (EMT). EMT, a complex of phenotypic changes, promotes cancer cell invasion and creates resistance to chemotherapies. Among the accessory cells present in the EMT, imm...

متن کامل

The H3K27me3-demethylase KDM6A is suppressed in breast cancer stem-like cells, and enables the resolution of bivalency during the mesenchymal-epithelial transition

The deposition of the activating H3K4me3 and repressive H3K27me3 histone modifications within the same promoter, forming a so-called bivalent domain, maintains gene expression in a repressed but transcription-ready state. We recently reported a significantly increased incidence of bivalency following an epithelial-mesenchymal transition (EMT), a process associated with the initiation of the met...

متن کامل

The histone demethylase PHF8 promotes prostate cancer cell growth by activating the oncomiR miR-125b

AIMS Prostate cancer (PCa) is the most frequently diagnosed malignancy in men. However, the underlying mechanism is not fully understood. In this study, we aim to research the molecular mechanisms underlying the initiation and progression of PCa. RESULTS Plant homeodomain finger protein 8 (PHF8) is upregulated in human PCa tissues and cell lines. PHF8 knockdown attenuates growth and cellular ...

متن کامل

Histone demethylase PHF8 promotes progression and metastasis of gastric cancer.

Histone demethylase plant homeodomain (PHD) finger protein 8 (PHF8) has been implicated in tumor development and malignant progression in various types of cancers. However, its potential roles in gastric cancer (GC) have not been explored. In this report, we show that PHF8 expression is upregulated in GC tissues, and the enhanced PHF8 level indicates a poor prognosis of GC patients. PHF8 knockd...

متن کامل

LSD1 binds to HPV16 E7 and promotes the epithelial-mesenchymal transition in cervical cancer by demethylating histones at the Vimentin promoter

Lysine-specific demethylase 1 (LSD1), which specifically demethylates histone H3 lysine 4 (H3K4) and lysine 9 (H3K9), is dysregulated in several cancers. We found that ectopic expression of LSD1 in cervical cancer cells promoted invasion and metastasis in vitro and in vivo, reduced the expression of the epithelial marker E-cadherin, and induced the expression of the mesenchymal marker, Vimentin....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2017